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1. Introduction

1.1 Complex space-based systems need constant monitoring

Some complex space-based systems require constant monitoring -- parameters,

configuration, and component condition changes with time. Current operational

practice often requires human operators to scan telemetry, watching for deviations

from expected performance. In real-time, large-scale applications this often proves

expensive, since many operators are required given the data processing limitations of

humans. By automating some or most of the fault detection and isolation, recovery,

and control of these dynamic systems, the need for direct human intervention may be

reduced.

The objective of the Systems Autonomy Demonstration Project (SADP) was to develop

and validate a knowledge-based system for real-time control and fault detection,

isolation and recovery (FDIR) of a complex prototype space subsystem. This two-

volume report describes the technical and programmatic results of SADP, which was a

joint effort between NASA's Ames Research Center (ARC) and Johnson Space Center

(JSC). In addition to the significant technical challenges of SADP, cultural differences

between the operationally-oriented JSC organization and the research-oriented ARC

organization had to be overcome before artificial intelligence software could be

integrated with a live testbed.

A prototype thermal control system, or thermal bus, for the Space Station Freedom

(SSF) was selected as a representative system for a symbolic control application, the

Thermal Expert System (TEXSYS). In the course of TEXSYS development, ARC

created the expert system and operator interface software, while JSC was responsible

for data acquisition and control software, providing thermal expertise, and testbed

operations. At ARC, a thermal brassboard originally built by Sundstrand Aviation for

KC-135 zero-gravity tests was employed for TEXSYS development and

demonstrations. The thermal bus used for TEXSYS tests at JSC was the Boeing

Aerospace Thermal Bus System (BATBS) resident at JSC. Both thermal systems

followed the same Sundstrand design -- a complex, self-balancing system, described

by many independent parameters. The nonlinearity of this particular thermal bus

architecture has thus far made conventional dynamic numerical simulation infeasible.



1.2 Potential safety and cost Improvements achieved by automating

The patient analysis required to detect very low frequency anomalies is a task that

human beings dislike and perform poorly. Unlike expert systems, human operators

may become inattentive, fatigued, or need to attend to bodily functions. Automated

trend analysis may detect slow degradation and other incipient failures before they

impact mission performance or exceed safety limits. Given continuous monitoring of

manned space systems, cost savings may also be realized by automating the

mundane monitoring and troubleshooting tasks -- thereby freeing crew time and

reducing the level of required ground staffing.

2. Prolect Goals

2.1 Technical Goals: Real-time knowledge-based control

The objective of the Systems Autonomy Demonstration Project was to develop and

validate a knowledge-based system for real-time control and fault detection, isolation

and recovery (FDIR) of a complex space subsystem. The software thus developed was

to be capable of diagnosis of all major thermal bus failure modes, and had to exhibit

real-time nominal control as well as real-time correction of at least a few failures. A

prototype thermal control system, or thermal bus, for Space Station Freedom was

selected as a representative system and the TEXSYS (Thermal Expert System) was

created.

2.2 Institutional Goals

From the initial 1986 SADP Project Plan [1]:

"The broad objectives of this demonstration project were to provide:

Technical base of in-house personnel and development tools to facilitate AI technology
transfer.

Technology focus for Automation research and development in support of NASA's space
programs.

Means for validation and demonstration of Automation technology prior to transfer to Agency
programs.

Credibility of Automation technology within NASA.

Credibility of NASA AI expertise to the outside AI community."

A specific objective of this project was to provide:



"Atechnologydemonstrationto establishautomationrequirementsof systemsoperations
techniquesfor TCS [ThermalControlSystem]configurationmonitoring, systemsstatus,
faultidentification/isolation/diagnosis,and reconfiguration."

3. SADP Or0anization: o eoqraDhically diffuse

The project was a joint effort of four divisions at two NASA centers. Project

management, the expert system development, and initial TEXSYS testing with the

Sundstrand thermal brassboard were all conducted by the Information Sciences

Division at ARC. The Aerospace Human Factors Division at Ames designed the

Human Interface to TEXSYS (HITEX). Domain expertise, the thermal bus and control

systems were provided by the Crew and Thermal Systems Division at JSC. The

Systems Development and Simulation Division at JSC built the TEXSYS Data

Acquisition System (TDAS) and managed the systems integration and testing effort at

JSC. Funding was provided through FY88 for early work on a combined Power-

Thermal demonstration scheduled to follow the standalone TEXSYS demonstration.

Towards this end, the Automation Power Expert (APEX) system at NASA-Lewis

Research Center was begun under the auspices of the SADP, but was later separated

into an independent effort.

4. Technical AoDroach

4.1 Hardware: two-phase thermal bus

The Boeing Aerospace Thermal Bus System (BATBS), targeted in the final TEXSYS

demonstration at JSC, is the baseline thermal architecture for the SSF external

thermal bus. This thermal bus consists of 5 major component types - evaporators,

which collect heat by evaporation of ammonia; condensers, which reject heat to the

radiators by ammonia condensation; a Rotary Fluid Management Device (RFMD),

which acts as a zero-gravity pump; a Back Pressure Regulating Valve (BPRV), which

controls the temperature of the bus; and an accumulator, which acts as a reservoir of

vapor and fluid. The bus is instrumented with 86 temperature sensors, 9 pressure

sensors, 13 delta pressure sensors, 8 flowmeters, 2 accumulator position sensors, 16

solenoid valves, a RFMD power sensor, a RFMD speed sensor, and a position

indicator for the BPRV. Also provided are 30 calculated parameters such as heat load

applied to the evaporators. A commercial automated control package (FLEXCON,

from GeoControl Systems, Inc.) is used in the Thermal Test Bed at JSC and is

attached to the bus to provide data acquisition, limited automated control and manual

controls. The Sundstrand thermal brassboard used at ARC was a smaller version of
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the BATBS with fewer heat exchangers. This kind of test bed proved an excellent

environment for the TEXSYS project, providing a real-time electromechanical system

of tractable complexity, a variety of sensors similar to flight hardware and a controlled

test environment.

4.2 Multi-processor architecture

The TEXSYS system consists of three main components: the thermal expert system

('I'EXSYS), a human interface to TEXSYS (HITEX) and a data acquisition system

attached to the automated control package. The TEXSYS architecture is shown in

Figure 1.

TEXSYS communicates with the users through HITEX, which was designed for use

by thermal engineers. HITEX provides a variety of textual and graphical displays to

observe the state of the thermal bus and the expert systern,:and is used for

demonstrating possible flight system operator interface capabilities. It presents this

information on two user configurable monitors, witha keyboard and mouse shared

between them. A monochrome-graphics monitor_reportson the expert system, showing

information such as the currently active tasks, faults diagnosed, instructions to the

user and explanations. :_This monitor is also the plac e where user inpu t to the expert

system is made via the mouse or keyboard. A col0rgraphics monitor is used to

display the state of the thermal bus in several different ways. Each monitor screen is

divisible into multiple tiled windows and includes a fixed menu of icons used to initiate

actions. Configuration of the screens is made from a series of pop-up menus and

type-in windows triggered by mouse clicks on menu icons.

As was shown in Figure 1, the TEXSYS and HITEX systems are linked to the control

system of the bus by the TEXSYS Data Acquisition System (TDAS) [2]. The prototype

TDAS was created in 1986-87 by Lawrence Livermore National Laboratory (LDAS),

and was used at AR__C_withtheSundstrand brassboard. The current TDAS was written

by the Systems Development and Simulation Division at JSC.

TEXSYS supplies TDAS with lists of sensors whose values are of current interest to

TEXSYS and HITEX. To reduce the amount of data to be processed, each sensor

has associated with itself a set of deadbands and significance limits on TDAS. TDAS

scans the data from the FLEXCON-based Data Acquisition and Control System

(DACS) database at each update, in this case every five seconds, and calculates the

trend and long term trends of the analog readings. Comparing current and previous
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sensor values against the defined deadbands, significance limits, and alarm values,

only significant sensor values are flagged to be sent to TEXSYS and HITEX. When

no alarm values are violated, the significant data are forwarded after TDAS is polled;

alarm violations are reported asynchronously to TEXSYS. TEXSYS can change the

list of sensor readings examined and all sensor-associated limits.

4.3 Online model-based reasoning

The expert system was built using two software toolkits created by ARC. The Model

ToolKit (MTK) was built to allow the rapid construction of qualitative models of

physical systems.[3, 4] It features an object-oriented graphical interface to allow

models to be built by selecting items from libraries and connecting them using a

mouse. The Executive ToolKit (XTK)is-a task language with constructs that allow

symbolic processes to interact with low-level data acquisition and control

processes.[5]

Rules for the propagation of sensor readings and data values, and the conversion of

these to qualitative values, are included in the classes of component objects and are

compiled by MTK into active values (daemons) before run time to enhance

performance. In addition, a consistency-based diagnosis approach, using an

assumption-based truth maintenance system (ATMS), is employed wl_en inconsistent

sensor readings are detected. Hypothe_tical Worlds [globally-consistent belief sets]

are-generated corresponding to each canclidate fault set. These fault candidates are

obtained in a manner similar to that of de Kleer and Williams's General_biagnostic

Engine (GDE) approach [6]. An assumption-based truth maintenance system (ATMS)

[7] is used in TEXSYS to keep track of the chain of downstream facts which are

justified by a given sensor reading. When a new reading arrives, the ATMS marks this

previous chain as disbelieved, followed then by propagation and qualitative

translations of the new reading in the model to generate a new chain of facts within the

ATMS. TEXSYS marks the first time that consistency-based diagnosis and an

assumption-based truth maintenance system have been used extensively in a

realtime online controller application [4,8].

Rather than waiting for observations of future behavior to resolve ambiguous

evidence, consideration of the thermal bus's past path in qualitative state space can

be used to isolate faults. In MTK, this is implemented as a historian, which keeps a

timestamped stack of the last five qualitative states for all parameters to which it was

attached. Temporal reasoning on about ten percent of the model's parameters
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provided sufficient information to distinguish all known fault modes with minimal

additional overhead.

4.4 Procedural task execution

XTK includes a language for building tasks that are initiated by the expert system to

carry out control and other actions on the system being monitored. Tasks are initiated

in the expert system by establishing goals to be satisfied by the XTK tasks. Backward-

chaining then causes the task or tasks needed to satisfy the goal to be started. The

tasks that are written using XTK cannot be modified at run-time, but do have looping

and branching conditionals and the ability to query the knowledge base, allowing the

tasks to have a predefined range of responses to changing conditions.

_;, Obstacles Overcome

5.1 Thermal bus hardware: target shifts, evolution

The development of TEXSYS was begun without the availability of most specific

target system expertise. The three thermal bus testbeds at JSC evolved in parallel with

TEXSYS software development. Because it was expected from the beginning that the

thermal bus hardware design would vary during the course of software development,

it was decided to adopt a device-centered approach to modeling in TEXSYS. For

instance, the behavior of basic components such as filters and valves could be

easily specified prior to knowledge of overall bus behavior. This device-centered

approach was implemented easily as an object-oriented system, using a library of

components to build schematic-like models. These models contained multiple

instances of components, e.g., many individual solenoid valves. As the

characteristics of two-phase thermal bus components became better known, the

prototypical or parent-class definitions of given components were edited to reflect

new knowledge, without explicitly altering the models -- a flexibility not found in

unstructured AI approaches without inheritance, such as production systems.

In addition to parallel thermal hardware evolution, TEXSYS software development

had to adapt to several changes in the identity of the thermal testbed targeted for

delivery. Initial TEXSYS prototypes modelled portions of the then-planned Grumman

thermal bus design. Subsequent changes in the targeted testbed were from a small-

scale Grumman thermal brassboard to the Sundstrand thermal brassboard, and the
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(similar) BATBS. This "moving target" problem itself demonstrated the value of a

toolkit for rapid model editing -- the Model Toolkit, or MTK.

MTK's easy model modification capability allowed TEXSYS designers: (a) to reuse a

high proportion of the knowledge base developed for the original target testbed in

building later models of other testbed designs, and (b) during online testing with the

BATBS, to modify the model to reflect a physically-removed valve -- in five minutes,

compared with several days to modify and debug conventional procedural software

(i.e., the DACS).

5.2 AI software performance

Initial TEXSYS prototypes used an ATMS together with interpreted forward-chaining,

breadth-first KEE rules for propagation within the model as well as for matching faults.
The first tests of TEXSYS with the Sundstrand thermai brassboard model in July 1988

consumed roughly three hours per update cycle -- orders of magnitude slower than

required -- given just four new sensor readings per cycle.

This led to the design of a rule compiler (written by John Nienart) in which all rules

were transformed into small compiled Lisp functions attached to locations in the

model. Using this compilation approach, the comparable update cycle time for

TEXSYS was reduced to about ten seconds -- thereby achieving real-time

performance levels for the thermal bus domain. Without this performance

improvement, no realtime control would have been possible for TEXSYS.

Even with the rule compiler in use, voluminous data updates associated with BATBS

startup tended to slow TEXSYS to about 30-45 seconds/cycle. Furthermore, certain

control actions during startup required faster-than-usual TEXSYS performance. In this

case, performance requirements were met by widening the TDAS update deadbands

for all non-startup-critical sensors to large values, effectively filtering out updates from

these non-critical sensors during startup. Certain time-critical valve sequencing

functions during startup were implemented as separate, subsidiary closed-loop

controllers (written in the XTK language).

5.3 Hypothetical reasoning slowness

During TEXSYS development tests at ARC with the Sundstrand thermal brassboard, it

was noticed that occasionally some faults induced symptoms which were not

significantly different than those induced by other known faults. One initial approach
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discussed to resolving this fault mode ambiguity was to carry forward multiple

candidate sets of faults as separate candidate worlds, and to then wait for future

snapshots of bus behavior to hopefully confirm one world as reality. However, it was

found that model update times rose linearly with the number of existing worlds. Given

that TEXSYS's normal cycle time was about twenty seconds with only a single

baseline world, and given an imposed cycle-time ceiling of one minute, the

competing-hypotheses approach to ambiguous faults was not feasible without

replacing the worlds and truth-maintenance systems with a more efficient non-

commercial implementation -- at a late stage of TEXSYS development. Therefore,

ARC researchers created a hybrid rule- and model-based approach.

It was necessary in this hybrid approach to reduce the reliance on consistency-based

diagnosis for trapping all faults, except for bad sensors and previously-unknown or

unforeseen faults. The KEE ATMS was then typically used only as a justification-

based TMS except for these sensor conflict and unexpected faults. In retrospect, it is

not likely that a solely model-based approach could have replaced all rule-based

reasoning in this domain, even with much faster computers, given the existence of

highly nonlinear, heuristically-modelled components in the BATBS model.

(_, Project Course

The expert system and human interface software were developed as prototypes of

increasing capability and complexity over a period of 18 months. Given a dearth of

detailed thermal bus knowledge, software development was focussed during this time

on implementing basic reasoning and modelling techniques in the MTK and XTK

toolkits. Each successive prototype of the expert system and human interface was

refined based on comments from human factors scientists at ARC and the thermal bus

experts and users at JSC. The first several prototypes demonstrated were standalone

systems and were not attached to any hardware. These prototypes were used to

validate the basic thermal knowledge obtained from the experts, to educate the users

as to the capabilities of expert systems and to explore some human interface design

concepts. Later prototypes were tested with LDAS and the Sundstrand thermal

brassboard at ARC.

These ARC brassboard tests were used to validate the basic TEXSYS design,

discover any gross gaps in thermal bus knowledge, resolve timing problems, and

verify proper control of the thermal bus. Demonstrations of prototype versions of

9



TEXSYS with the Sundstrand brassboard were given to NASA Administrator James

Fletcher (September 1988) and to Associate Administrator of the Office of Space

Station (OSS) Jim Odum (November 1988).

After delivery to JSC of the BATBS hardware, a set of tests was run by the domain

experts to examine the operation of the bus and evaluate it for use on the space

station. Fabrication delays in the delivery of the Grumman brassboard hardware

forced a switch to the BATBS design in the spring of 1988. The operational

experience gained by the experts from the BATBS tests was then used to generate

three documents for use in creating the operational TEXSYS: a physical description

of the bus and its general behavior; a nominal operations document that explained all

procedures for operations such as startup, shutdown and setpoint change; and a fault

diagnosis and recovery procedures document that characterized known BATBS

faults. Together with hands-on tests with the Sundstrand brassboard, these three

documents formed the basis for the ARC-developed knowledge base. The ARC staff

then spent six months developing and testing the TEXSYS knowledge base, which

was delivered to JSC in February, 1989. ARC technical staff were then posted to

JSC on a continuous, rotating basis until the final JSC demonstration in August, 1989.

A group of JSC staff meanwhile drafted a plan for the integration and testing of the

TEXSYS/HITEX/'rDAS system after delivery from ARC. Following the outline in this

test plan, several weeks of testing was performed to check connectivity between the

various subsystems. The next set of tests was performed at JSC by engineers from

both NASA centers, using recorded data from the earlier BATBS fault injection tests.

These tests used the playback of data for a particular nominal operation or fault to

validate the TEXSYS model and its diagnostics for that operation or fault. This was

the first comprehensive testing of the knowledge bases with real data from the BATBS,

and it required six weeks, through mid-July, 1989.

Finally, another six weeks of testing was performed, with the entire TEXSYS system

online with the live BATBS at JSC. This testing involved two shifts of operations and

methodically worked through the nominal operations and faults covered by the expert

system. Many revisions to the knowledge base and operations tasks were made as

more experience with the bus was gained. For example, it was found that for the

BPRV failure fault, the time lag between fault injection, appearance of initial symptoms

and appearance of symptoms that allow the differentiation and isolation of the fault

was much shorter than initially anticipated, as the bus was more stable than had been

10



predicted by earlier tests. The software systems were frozen at the end of this testing

period. The final TEXSYS system in September, 1989, contained 340 rules and over

3400 frames in the model, and 146 tasks for recovery and nominal control.

After the online testing was completed, a two week formal test and demonstration was

conducted in late August, 1989. All of the nominal operations and fault procedures

were successfully performed. These were extensively documented with screen

hardcopies and printouts of justifications of fault diagnoses (see Appendix A). In

addition, formal briefings and demonstrations were given for senior NASA

management of ARC and JSC, and for key Space Station Freedom managers (Level I

and II) and Work Package 2 contractors in the thermal and automation groups.

7. Final Demonstration Results at JSC

In tests run with the BATBS at the NASA Johnson Space Center in August, 1989,

TEXSYS successfully performed real-time monitoring and control (such as valve

actuation) during all nominal modes of operation such as startup and setpoint

changes. TEXSYS successfully noticed and reacted to all of the required seventeen

BATBS faults shown in Figure 2. Multiple faults were often encountered -- the

TEXSYS architecture proved to be capable of recognizing multiple independent

faults, both in parallel and serially. Unplanned faults were also demonstrated, such as

a shorting solenoid valve which was noticed due to a conflict in local temperatures

caused by its radiated excess heat. Since any given system-level fault can be

induced by any of several component faults, and only about a third of these known

component faults were included in t_he formal demonstration, unplanned component

faults were fairly common. In these cases, TEXSYS identified the system-level fault

even when it didn't recognize the component fault causing the problem. During these

tests, TEXSYS update cycle times were about 10-30 seconds, but varied between

five seconds to about a minute, depending on the quantity of data updated in a given

cycle. When sensor conflicts caused hypothetical worlds to be created, the latter

duration could stretch to several minutes, thereby violating user requirements.

An example of a system and component-level fault is given in Figure 3, in which a

stuck-closed valve (component fault mode) causes the total flow through the

evaporators (BFMT01) to drop abnormally (system fault mode) and the downstream

heat exchanger temperature (BTC005) to rise due to lack of fluid. TEXSYS noted the

drop in flow immediately and advised the operator. After BTC005 rose beyond the

11
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expected range for the current heat load, TEXSYS notified the operator of a possible

blockage fault, and toggled the isolation valve to confirm the fault. Toggling the valve

restored normal flow, indicating a previously-stuck valve.

7.1 Gradual Acceptance by Users

Given significant mistrust of AI techniques by the thermal engineers, initial TEXSYS

online tests were conducted with all control actions subject to operator approval. As

user confidence in the software increased, they gradually allowed TEXSYS direct

control of the BATBS. After a month of online testing with the BATBS, it was noticed

that the thermal engineers were comfortable with taking their attention away from their

telemetry displays when they knew that TEXSYS was on line (e.g., informal

discussions, taking bathroom breaks, etc.), leaving only an operator at the human

interface console and a technician by the BATBS kill switch. The thermal engineers

consider TEXSYS to be a significant improvement over their previous fault detection

and data display capability, but criticize its occasional slowdowns (usually due to

worlds processing). Faster computers and further Code rewrites would have helped

these slowdowns.

7.2 Model-Based Benefits Shown

In addition to simplifying and reducing the number of rules needed for fault recognition

(only 340 rules in 190,000 total lines of code), the use of a device-oriented model-

based approach in TEXSYS allowed prototyping to begin over a year before a target

thermal bus design was selected. Conversion from the (original) Grumman thermal bus

design to the thermal brassboard and the BATBS simply required the addition of some

classes of specialized hardware to the component library, e.g., pitot pumps in addition

to ordinary vane pumps. Rules referring only to components and fault modes common

to all thermal busses were reused, reducing development effort.

Another benefit of the device-oriented modelling approach was the ability to edit the

arrangement of components in the model, to follow repairs or damage, without

changing the fault recognition rules or altering the conflict resolution system software.

When a broken valve was replaced with a length of pipe during testing, this capability

allowed TEXSYS to be brought offline, the corresponding model component removed,

the ATMS reinitialized, and TEXSYS brought back online in about twenty minutes. In

comparison, according to the thermal engineers, the same change made to the

Fortran-based DACS would have taken at least four days. Finally, a model-based

=
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approach was found to ease knowledge acquisition, as non-Lisp-versant thermal

engineers could reason in terms of device interactions in a schematic representation

more easily than they could debug complex rules.

7.3 Benefits of Hands-on Brassboard Testing

Early hands-on experience with thermal bus hardware in a research environment (the

Sundstrand brassboard) at ARC was also beneficial. Total running time of the

brassboard at ARC actually exceeded that of the BATBS during later testing at JSC.

Early problems with online diagnosis of brassboard failures pushed MTK

improvements and knowledge base refinements, and most timing issues during

thermal bus startup and shutdown were resolved in brassboard tests. Unexpected

failures, lack of consistent performance, and unmodeled nonlinearities were all

features of the brassboard. If instead a simulation had been employed at ARC during

software development, it is unlikely that these problems would have been discovered

or addressed until software field deployment at JSC.

7.4 Organizational impact and follow-on activities

The TEXSYS program was a proof-of-concept with respect to the use of model-based

symbolic control in a real-time environment. While it was a successful demonstration,

its software and hardware were predominantly Lisp-based and hence are presently

unsuitable for SSF onboard use. The model-based control approach (of which

TEXSYS is an example) is now being used by the SSF Work Package 2 prime

contractor to create a thermal bus control successor to TEXSYS, which will function

in the SSF onboard computing environment (Ada software in a Unix-based

environment, running on parallel Intel 80386-based computers) [9]. By demonstrating

that AI techniques can be reliably used to monitor and control complex space

subsystems such as the BATBS, the TEXSYS project has made NASA management

•and thermal engineers more willing to consider the future use of AI techniques in

Space Station Freedom and Lunar/Mars mission thermal control software.

Development of a similar knowledge-based system is now underway for Space

Station Freedom power distribution and is being considered for planned closed-loop

life support systems. The model-based approach developed for TEXSYS and the XTK

toolkit are being used for development of a life support design workstation [lO].
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The success of the hierarchical symbolic model-based control approach taken in

TEXSYS demonstrates that a layered symbolic controller can be used to

successfully control complex hardware in real time. The use of qualitative model-

based and temporal reasoning in TEXSYS is one of the first applications of these

techniques to online, real-time process control. TEXSYS successfully makes use of

an incomplete causal model and identifies multiple independent faults with it.

It is too soon to say if the TEXSYS demonstrations will ultimately lead to a spaceborne

diagnostic system, but they show that AI techniques can be effectively applied to

real-time control of large electromechanical systems, such as those planned as part of

Space Station Freedom and future lunar and Mars bases. A generic, component-

oriented modelling approach is recommended in order to follow dynamic hardware

configurations. A component-oriented rather than a system-oriented approach can

avoid much rewriting of rules when components are rearranged in a device, as often

happens during repairs, upgrades, and design changes of complex mechanisms. The

operational success of TEXSYS demonstrates that a range of techniques (model-

based and qualitative reasoning, classification systems, frame-based

representations, temporal reasoning, and procedural reasoning) can be used

together to control and diagnose faults in certain relevant electromechanical systems

in real time. Given their success in the TEXSYS demonstration, the model-based

symbolic control methods used are a promising general approach to the automation of

the monitoring and control of manned spacecraft subsystems.

The payoff of this automation is threefold: increased likelihood of mission success, or

improved robustness; reduced operations costs; and, increased crew scientific

productivity. Given automated monitoring and control as shown in the TEXSYS

demonstrations, incipient and time-dependent faults can be automatically detected

and warnings issued to crew or corrective action taken prior to catastrophic failures.

This automated monitoring capability should also reduce the burden on human

subsystem monitoring and thence reduce recurring mission operations costs. Finally,

the automation of routine subsystem housekeeping functions will reduce their share of

crew work schedules, thus freeing crew members for more intrinsically useful

activities.
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9, Notes on Volume Two and AD0endices

In contrast with the overview given in this volume, the testing of TEXSYS with the

BATBS hardware and the design and use of SADP software are discussed in detail in

Volume Two and Appendices A and B, respectively. Volume Two and Appendix A

were written by the Crew and Thermal Systems Division at JSC as their final TEXSYS

test report. Appendix B is a collection of TEXSYS software design documents and

toolkit user guides, written by the software developers at ARC and JSC over the past

eighteen months. Given the disparate sources, the format and style varies between

documents.
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